
Hans-Petter Halvorsen

https://www.halvorsen.blog

Modbus
With Practical LabVIEW Examples

• Modbus
• Modbus in LabVIEW
• LabVIEW Examples
–LabVIEW Coils Examples
–LabVIEW Discrete Input Registers Examples
–LabVIEW Input Registers Examples
–LabVIEW Holding Registers Examples

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Modbus

Table of Contents

• Modbus is a serial communications protocol originally
published by Modicon (now Schneider Electric) in 1979 for
use with its programmable logic controllers (PLCs).

• Simple and robust, it has since become a de facto standard
communication protocol, and it is now a commonly
available means of connecting industrial electronic devices

• The development and update of Modbus protocols has
been managed by the Modbus Organization since April
2004, when Schneider Electric transferred rights to that
organization (https://modbus.org)

• Modbus became the first widely accepted fieldbus
standard.

What is Modbus?

https://modbus.org/

Modbus

Master

Slave

Slave

Slave

RTUPLC

PC

Process Measurements

The master typically is a PLC (Programmable Logic Controller), PC or DCS (Distributed Control System)

A remote terminal unit (RTU) is a microprocessor-controlled electronic
device that interfaces objects in the physical world to a DCS or SCADA System

SCADA DSC

RTU

Sensors and Actuators

Master

Master/Slave

Master Slave
Request

Response

The Modbus protocol follows a Master/Slave (Client/Server) architecture where a
Master (Client) transmits a request to a Slave (Server) and waits for the response.

ServerClient

Note! The terms “Master” and “Slave” used in Modbus has been
replaced with the terms “Client” and “Server”. The LabVIEW Modbus

package still use the old terms, so they will also be used in this Tutorial

• Modbus protocol is defined as a master/slave
protocol, meaning a device operating as a
master will poll one or more devices operating
as a slave.

• This means a slave device cannot volunteer
information; it must wait to be asked for it.

• The master will write data to a slave device’s
registers and read data from a slave device’s
registers. A register address or register reference
is always in the context of the slave’s registers.

Master/Slave

Master/Slave

Master
Slave

Master Data Stored in Registers

Write Data

Read Data

Modbus protocol is defined as a master/slave protocol, meaning a device operating as a master will poll
one or more devices operating as a slave. This means a slave device cannot volunteer information; it must
wait to be asked for it. The master will write data to a slave device’s registers and read data from a slave
device’s registers. A register address or register reference is always in the context of the slave’s registers.

Polling/Request

Registers
Client

Client

Server

• Coil (Discrete Output)
– Coils are 1-bit registers, used to control discrete

outputs, Read or Write

• Discrete Input (Read Only)
– 1-bit registers

• Input Register (Read Only)
• Holding Register (Read/Write)

Modbus Register Types

Access Levels
• In SCADA systems, it is common for embedded devices to have

certain values defined as inputs, such as gains or proportional
integral derivative (PID) settings, while other values are
outputs, like the current temperature or valve position.

• To meet this need, Modbus data values are divided into four
ranges

• In many cases, sensors and other devices generate data in
types other than simply Booleans and unsigned integers.

• It is common for slave devices to convert these larger data
types into registers. For example, a pressure sensor may split a
32-bit floating point value across two 16-bit registers.

Access Levels

Register Type Data Type Master Access Slave Access
Coils Bit (Boolean) Read/Write Read/Write
Discrete Input Bit (Boolean) Read-only Read/Write
Input Register Unsigned Word Read-only Read/Write
Holding Register Unsigned Word Read/Write Read/Write

An Unsigned Word is a 16-bit nonnegative Integer Value between 0 – 65535 (2^16)

• 0x = Coil, Address Range: 00001-09999
• 1x = Discrete Input, Address Range: 10001-19999
• 3x = Input Register, Address Range: 30001-39999
• 4x = Holding Register, Address Range: 40001-49999

When using the extended referencing, all number references must
be exactly six digits. This avoids confusion between coils and other
entities. For example, to know the difference between holding
register #40001 and coil #40001, if coil #40001 is the target, it must
appear as #040001.

Register Addresses

Register Referencing
40001:7
• This is a commonly used notation for referencing

individual bits in a register.
• This example references register 40001 (which is a

Holding Register), bit 7.
• Bits are generally numbered starting at bit 0,

which is the least significant or right most bit in
the field of 16 bits found in a Modbus register.

Modbus Protocols
• Modbus ASCII
• Modbus RTU (Remote Terminal Unit)
– Modbus RTU uses RS-485 or RS-232

• Modbus TCP/IP
– Modbus TCP uses Ethernet

Modbus ASCII and Modbus RTU are simple serial protocols
that use RS-232 or RS-485 to transmit data packets.
Modbus TCP/IP follows the OSI Network Model and can be
used in an ordinary Ethernet network

We will focus on Modbus
TCP/IP in this Tutorial

Modbus Communication

RS-232 RS-485 TCP/IP

Master Slave Master Slave Master Slave

Slave

Slave

...

128 Master Slave

SlaveMaster

... ...

Multi-drop network

• Modbus TCP/IP follows the OSI Network
Model and can be used in an ordinary
Ethernet network
• Modbus TCP requires that you know or

define IP addresses on the network
• Modbus TCP/IP uses Port 502

Modbus TCP/IP

Hans-Petter Halvorsen

https://www.halvorsen.blog

Modbus in LabVIEW

Table of Contents

3 ways to use Modbus in LabVIEW:
• Use a high-level OPC Server
• Use Modbus I/O Server
• Use the LabVIEW Modbus API
“LabVIEW Real-Time Module” or “LabVIEW
DSC Module” required

Modbus in LabVIEW

LabVIEW Modbus API

Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW Examples

Table of Contents

Memory Type Data Type Master Access Slave Access

Coils Bit (Boolean) Read/Write Read/Write

Discrete Input Bit (Boolean) Read-only Read/Write

Input Register Unsigned Word Read-only Read/Write

Holding Register Unsigned Word Read/Write Read/Write

• LabVIEW Coils Examples
• LabVIEW Discrete Input Registers

Examples
• LabVIEW Input Registers Examples
• LabVIEW Holding Registers Examples

Modbus LabVIEW Examples

Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW Coils
Examples

Table of Contents

LabVIEW Coils Example

Master
(Client) Slave

(Server)

Master
(Client) Data Stored in Registers

Write Data

Read Data

Polling/Request

Registers

LabVIEW App #1LabVIEW App #2

LabVIEW App #3

In this Example we Create 3 different LabVIEW Applications:

Memory Type Data Type Master Access Slave Access

Coils Bit (Boolean) Read/Write Read/Write

LabVIEW Coils Example
LabVIEW App #1 (Slave)

LabVIEW App #2 (Master)

LabVIEW App #3 (Master)

Note! You need to start/run the Modbus Slave
App before you start the Modbus Master Apps

Write Data to Slave

Read Data from Slave

Modbus Slave

This part is just for
reading the internal Coil
Data. It can be removed.
It is just to see when
new data from the
Masters has been
received

Modbus Master (Write)

Modbus Master (Read)

LabVIEW Modbus Simulator

The LabVIEW Modbus Simulator
is integrated with “LabVIEW Real-
Time Module” or “LabVIEW DSC
Module”

It can be used for test purpose,
etc.

The LabVIEW Modbus Simulator is a Modbus Slave (Server)

NI Example Finder
Find Modbus
Examples with NI
Example Finder

LabVIEW Modbus Simulator Example

Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW Discrete Input
Registers Examples

Table of Contents

LabVIEW Discrete Input Registers Examples

Memory Type Data Type Master Access Slave Access

Discrete Input Bit (Boolean) Read-only Read/Write

Slave
(Server)

Master
(Client)

Data Stored in Registers

Read Data

Request

Registers
LabVIEW App #1LabVIEW App #2

In this Example we Create 2 different LabVIEW Applications:

LabVIEW Discrete Input Registers Examples

Modbus Slave

Modbus Master

Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW Input
Registers Examples

Table of Contents

LabVIEW Input Registers Examples

Memory Type Data Type Master Access Slave Access

Input Register Unsigned Word Read-only Read/Write

Slave
(Server)

Master
(Client)

Data Stored in Registers

Read Data

Request

Registers
LabVIEW App #1LabVIEW App #2

In this Example we Create 2 different LabVIEW Applications:

LabVIEW Input Registers Examples

Modbus Slave

Modbus Master Read Input

Decimal/Floating-point Numbers

Memory Type Data Type Master Access Slave Access

Input Register Unsigned Word Read-only Read/Write

• How do you deal with Decimal/Floating-point Numbers? In Modbus, the default practice
is to split a 32-bit floating point value across two 16-bit registers.

• In this example I just Multiply with 100 in the the Slave Application, then I divide by 100 in
the Master Application, which work when you deal with numbers with 2 decimals, and
you only need one register per number

• Example: 2.56 => 2.56x100=256 => 256/100 = 2.56

An Unsigned Word is a 16-bit nonnegative
Integer Value between 0 – 65535 (2^16)

32-bit floating point across two 16-bit registers
Here we have split a 32-bit floating point value across two 16-bit registers

32-bit floating point across two 16-bit registers
Here we get the 32-bit floating point from two 16-bit registers

Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW Holding
Registers Examples

Table of Contents

LabVIEW Holding Registers Example

Master
(Client) Slave

(Server)

Master
(Client) Data Stored in Registers

Write Data

Read Data

Polling/Request

Registers

LabVIEW App #1LabVIEW App #2

LabVIEW App #3

In this Example we Create 3 different LabVIEW Applications:

Memory Type Data Type Master Access Slave Access

Holding Register Unsigned Word Read/Write Read/Write

LabVIEW Holding Registers Example

Modbus Slave

Modbus Master (Write)

Modbus Master (Read)

Alt Solution
• How do you deal with Decimal/Floating-point

Numbers?
• Previously we implemented a simple solution by

multiplying and dividing with 100, which worked fine
for 2 decimal numbers

• In Modbus, the default practice is to split a 32-bit
floating point value across two 16-bit registers.

• The disadvantage is that we need to use 2 Modbus
register for representing one number

32-bit floating point across two 16-bit registers
Here we have split a 32-bit floating point value across two 16-bit registers

32-bit floating point across two 16-bit registers
Here we get the 32-bit floating point from two 16-bit registers

Modbus Master (Write)

Modbus Master (Read)

Modbus Registers Summary

Register Type Data Type Master Access Slave Access
Coils Bit (Boolean) Read/Write Read/Write
Discrete Input Bit (Boolean) Read-only Read/Write
Input Register Unsigned Word Read-only Read/Write
Holding Register Unsigned Word Read/Write Read/Write

An Unsigned Word is a 16-bit nonnegative Integer Value between 0 – 65535 (2^16)

References
• Modbus Organization: http://www.modbus.org
• Modbus (Wikipedia): https://en.wikipedia.org/wiki/Modbus
• Introduction to Modbus (National Instruments):

http://www.ni.com/white-paper/7675/en/
• Connect LabVIEW to Any PLC With Modbus (National Instruments):

http://www.ni.com/tutorial/13911/en/
• Modbus 101 - Introduction to Modbus:

http://www.csimn.com/CSI_pages/Modbus101.html
• Modbus TCP/IP: http://www.rtaautomation.com/technologies/modbus-tcpip/
• Modbus RTU: http://www.rtaautomation.com/technologies/modbus-rtu/
• Using Modbus for Process Control and Automation (PDF):

http://www.miinet.com/Portals/0/articles/Using_MODBUS_for_Process_Control_
and_Automation.pdf

http://www.modbus.org/
https://en.wikipedia.org/wiki/Modbus
http://www.ni.com/white-paper/7675/en/
http://www.ni.com/tutorial/13911/en/
http://www.csimn.com/CSI_pages/Modbus101.html
http://www.rtaautomation.com/technologies/modbus-tcpip/
http://www.rtaautomation.com/technologies/modbus-rtu/
http://www.miinet.com/Portals/0/articles/Using_MODBUS_for_Process_Control_and_Automation.pdf

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

