https://www.halvorsen.blog
%ﬂodbus 4

Modbus

With Practical LabVIEW Examples

Hans-Petter Halvorsen

* Mod

OUS

* Mod

Contents

ous in LabVIEW

e |3

oVIEW Examples

_d

o)

EW Coils Examples

_d

o)

EW

Discrete Input Registers Examples

_d

o)

EW

nput Registers Examples

_d

o)

EW

Holding Registers Examples

https://www.halvorsen.blog

Modbus

Hans-Petter Halvorsen Table of Contents

What is Modbus?

Modbus is a serial communications protocol originally
published by Modicon (now Schneider Electric) in 1979 for
use with its programmable logic controllers (PLCs).

Simple and robust, it has since become a de facto standard
communication protocol, and it is now a commonly
available means of connecting industrial electronic devices

The development and update of Modbus protocols has
been managed by the Modbus Organization since April
2004, when Schneider Electric transferred rights to that
organization (https://modbus.org)

Modbus became the first widely accepted fieldbus
standard.

https://modbus.org/

Modbus

The master typically is a PLC (Programmable Logic Controller), PC or DCS (Distributed Control System)

J Process Measurements

A remote térm‘inal unit (RTU) is a microprocessor-controlled electronic
device that interfaces objects in the physical world to a DCS or SCADA System

Sensors and Actuators

Master/Slave

Client Server

Request ‘
Master | | Slave

Response

The Modbus protocol follows a Master/Slave (Client/Server) architecture where a
Master (Client) transmits a request to a Slave (Server) and waits for the response.

Note! The terms “Master” and “Slave” used in Modbus has been
replaced with the terms “Client” and “Server”. The LabVIEW Modbus
package still use the old terms, so they will also be used in this Tutorial

Master/Slave

* Modbus protocol is defined as a master/slave
protocol, meaning a device operating as a
master will poll one or more devices operating
as a slave.

* This means a slave device cannot volunteer
information; it must wait to be asked for it.

* The master will write data to a slave device’s
registers and read data from a slave device’s
registers. A register address or register reference
is always in the context of the slave’s registers.

Master/Slave

Client

Write Data Server Registers
Master

Polling/Request

Client

Read Data

Master Data Stored in Registers

Modbus protocol is defined as a master/slave protocol, meaning a device operating as a master will poll
one or more devices operating as a slave. This means a slave device cannot volunteer information; it must
wait to be asked for it. The master will write data to a slave device’s registers and read data from a slave
device’s registers. A register address or register reference is always in the context of the slave’s registers.

Modbus Register Types

Coil (Discrete Output)

— Coils are 1-bit registers, used to control discrete
outputs, Read or Write

Discrete Input (Read Only)

— 1-bit registers

Input Register (Read Only)
Holding Register (Read/Write)

Access Levels

In SCADA systems, it is common for embedded devices to have
certain values defined as inputs, such as gains or proportional
integral derivative (PID) settings, while other values are
outputs, like the current temperature or valve position.

To meet this need, Modbus data values are divided into four
ranges

In many cases, sensors and other devices generate data in
types other than simply Booleans and unsigned integers.

It is common for slave devices to convert these larger data
types into registers. For example, a pressure sensor may split a
32-bit floating point value across two 16-bit registers.

Access Levels

Coils Bit (Boolean) Read/Write
Discrete Input Bit (Boolean) Read-only
Input Register Unsigned Word Read-only
Holding Register Unsigned Word Read/Write

Read/Write
Read/Write
Read/Write
Read/Write

An Unsigned Word is a 16-bit nonnegative Integer Value between 0 — 65535 (2716)

Register Addresses

* 0Ox = Coil, Address Range: 00001-09999

* 1x = Discrete Input, Address Range: 10001-19999

* 3x = Input Register, Address Range: 30001-39999

* 4x = Holding Register, Address Range: 40001-49999

When using the extended referencing, all number references must
be exactly six digits. This avoids confusion between coils and other
entities. For example, to know the difference between holding
register #40001 and coil #40001, if coil #40001 is the target, it must
appear as #040001.

Register Referencing

40001:7

* This is a commonly used notation for referencing
individual bits in a register.

* This example references register 40001 (which is a
Holding Register), bit 7.

e Bits are generally numbered starting at bit O,
which is the least significant or right most bit in
the field of 16 bits found in a Modbus register.

Modbus Protocols

e Modbus ASCII { We will focus on Modbus }
] . TCP/IP in this Tutorial
 Modbus RTU (Remote Terminal Unit)
— Modbus RTU uses RS-485 or RS-232
 Modbus TCP/IP
— Modbus TCP uses Ethernet

Modbus ASCIl and Modbus RTU are simple serial protocols
that use RS-232 or RS-485 to transmit data packets.

Modbus TCP/IP follows the OSI Network Model and can be
used in an ordinary Ethernet network

Modbus Communication

RS-232 RS-485 TCP/IP

Multi-drop network

Master

Modbus TCP/IP

* Modbus TCP/IP follows the OSI Network
Model and can be used in an ordinary
Ethernet network

* Modbus TCP requires that you know or
define IP addresses on the network

* Modbus TCP/IP uses Port 502

https://www.halvorsen.blog c

Modbus in LabVIEW

Hans-Petter Halvorsen Table of Contents

Modbus in LabVIEW

3 ways to use Modbus in LabVIEW:
* Use a high-level OPC Server
* Use Modbus I/O Server

e Use the LabVIEW Modbus API

“LabVIEW Real-Time Module” or “LabVIEW
DSC Module” required

LabVIEW Modbus API

1 Up ‘ C{ Search ‘ €, Customize™ ‘

@

Shared Varia...

v

-

Queue Oper...

hd

Actbr Frame...

»

Network St‘re...

f®'
-

Synéhronizat...

Modbus

[

Local Variable Global Varia...
I " [o= i

i

ol

J

g

DataSocket

4 Up l Q Search l S Crstomize”
hy

= ’l
Wodbus

Modbus Mas...

Modbus Slave

L\

iie Up ' Q Search ‘ % Customize~ ‘

1+ Up ' Q Search l € Customize™ ‘

[HodbusH] [HodbusH]
_ Fal [l

opP Create Maste... Closewvi

[HodbusH] [Hodbus:H]
Fa—

Property Node

[=]]
[Hodbu:z-H] [Hodbusz-H] [Hodbu:z-H]|
|ﬁ/ |ﬁ‘? |ﬂ.’é’

[Hodbus-H]

‘

;

5l

5l

L &S
L]

Read Discret...

Read Holdin... Write Single... Write Multipl... Write and Re... Mask Write ...

Read Coils.vi Write Single ...

Write Multipl...
[FodbizH) C|
#
Read Input R... Utilities

[Hodbus-H]

m/
.
e a

[Hodbus-S| [Hodbus-S|
FA Y [T=T]
| =8

Create Slave ... Closewvi Property Node
TS (Fodbaz3]
e

[Hodbys-S]

M/
s
e a

e ... Write Multipl..

g
i

Read Coils.vi Write Sing

[Hodbus-5] [Hodbus-5] [Hodbus-5]
&6 4 &6
[W

Read Discret... Write Multipl... Read Input R... Write Multipl...

[Hodbus-S] [Hodbus-S] [Hodbus-S]
&

Read Holdin... Write Single ... Write Multipl... Write and Re...

https://www.halvorsen.blog c

LabVIEW Examples

Hans-Petter Halvorsen Table of Contents

Modbus LabVIEW Examples
LabVIEW Coils Examples

LabVIEW Discrete Input Registers
Examples

LabVIEW Input Registers Examples

LabVIEW Holding Registers Examples

Coils Bit (Boolean) Read/Write Read/Write
Discrete Input Bit (Boolean) Read-only Read/Write
Input Register Unsigned Word Read-only Read/Write
Holding Register Unsigned Word Read/Write Read/Write

https://www.halvorsen.blog c

LabVIEW Coils
Examples

Hans-Petter Halvorsen Table of Contents

LabVIEW Coils Example

In this Example we Create 3 different LabVIEW Applications:

LabVIEW App #2 LabVIEW App #1
[Master | Write Data o Registers
Sy J i (Server) |
Polling/Request "
hlactes Read Data : :
[(Client) Data Stored in Registers

LabVIEW App #3

Coils Bit (Boolean) Read/Write Read/Write

e ARVIEW Coils Example

O
File Edit View Project Operate Tools Window Help

b
»[®][@[n
Coil Values to Write

Note! You need to start the Modbus Slave before you start the Modbus Master(s) @ Write

. Stop

~

v
>

<

LabVIEW App #3 (Master) Read Data from Sfave

£ Modbus Master Read - Coil.vi

= m] X
File Edit View Project Operate Tools Window Help
»[®|@[n] !

~
Coil Values

Note! You need to start the Modbus Slave before you start the Modbus Master(s)

te Data to Slave

9 B Modbus Slave - C
\ File Edit View Project Operate Tools
-, @

LabVIEW App #1 (Slave)

Window Help

Coil Values

|

Note! You need to start the Modbus Slave before you start the Modbus Master(s)

~

. Stop

>

~

v

Note! You need to start/run the Modbus Slave
App before you start the Modbus Master Apps

Modbus Slave

This partisjustfor e |
reading the internal Coil
Data. It can be removed.
It is just to see when
new data from the
Masters has been
received

£} Modbus Slave - Coil.vi Block Diagram = O X
File Edit View Project Operate Tools Window Help 0
AN - . - —— gse:
o [Iﬁf,-_,]@ |Lpu||E’ 3 | 15pt Application Font |~ ||2,;;v o | I@v ||izﬂ| *| Search A] 2
A
Create Slave Instance.vi| 1/ \\ Close.vi Simple Error Handler.vi
| (Hodbus-S)
e I
* @ S 3 : = X
New TCP Slave ¥ '
| " : Starting Address 1
PTF] !
4 |
I
' I
| I
\

<

:Number of Coils
10

Modbus Master (Write)

£} Modbus Master Write - Coil.vi Block Diagram

File Edit View Project Operate Tools Window Help
& |f§;i'@|bn|fa’ . I15ptApplication Font |~ H.Ep‘ :EE'J |®' l *| Search Q | s
A

Event Structure

] [1] "Write": Value Change v}

Write Multiple Coils.vi vi| [Simple Error Handler.vi

24 m] [

Type
Time

g::\{/eﬁ Coil Values to Write
9 [TF

NewVal

New TCP Master ¥ Source
Startin% Address!

£} Modbus Master Read - Coil.vi Block Diagram

Modbus Master (Read)

File Edit View Project Operate Tools Window Help

(> [®] ©[n][@][25] [wa]@ 2 [15pt Application Font |~ |[$m~

O X
av | ‘@' | liSearch -)\ I‘

Event Structure

H [1] "Read": Value Change vH

Read Coils.vi Vi Simple Error Handler.vi
=
New TCP Master ~ Source . :
[Starting Address Coil Values

@ ETF]

CtIRef

Oldval Number of C0|Is|

LabVIEW Modbus Simulator

B] 45 ; - O
File Edit View Project Operate Tools Window Helrp [
Q@|1sptApplication Font |~ |[3m~ |[Fa~]@ [+] Search R [l_‘
,. Stop
, National Instruments e
Modbus Simulator B>
— Digital — Analog Outputs ==y = Analog Inputs
© e e oo R e The LabVIEW Modbus Simulator
e o e wll || = ol || is integrated with “LabVIEW Real-
— = il = Time Module” or “LabVIEW DSC
)) 5{):§ 50:§ 5{):§ 50:§ IVI I ”
®» @ <@ || =] |5 ue || e odule
» » » || [f] = wifl | |
oo oo oo L8] (o8] Lo8d [ol It can be used for test purpose,
I A“f?',",f’”“ ,,,,,,,,,,,,,,,,,,,,,,,,,,,, etc.
100 0 100 0 100 0 1oo 0 100 0
S— — The LabVIFW|Modbus Simulator is a Modbus Slave (Server)

B NI Example Finder
Browse Search

Enter keyword(s)
|modbus

Double-click keyword(s)
. P

Modbus

NI Example Finder

Double-click an example to open it.

ny
- X

Information

Visit ni.com
for more examples

Hardware
Find hardware

[Limit results to hardware

4 examples match your search criteria
Meodbus Fundamentals.lvproj
- Meodbus Simulator.lvproj
Modbus Library.lvproj
Redundant Modbus Masters.lvproj

Description: ~

This LabVIEW example simulates
a basic Modbus device. This
example demonstrates how to
use a Modbus slave to read and
write data items by using
LabVIEW shared variables and
deploying and undeploying a
project library programmatically.
You can connect to this Modbus
device by using a Modbus |/0
server or a third-party Modbus
client.

This example requires the
LabVIEW Datalogging and
Supervisory Control Module.

Requirements

Add to Favorites

Setup... | Help Close

Find Modbus
Examples with NI
Example Finder

LabVIEW Modbus S

. Modbus Master Write - Coil.vi

File Edit View Project Operate Tools Window Help

imulator Example

Coil Values to Write

[ETocococccca

-_——

Note! You need to start the Modbus Slave before you start the Modbus Master(s)

[Modbus Simulator.lvproj/My Computer]| <

File Edit View Project Operate Tools Window Help

@ Write
- Stop

L)

. Stop
National Instruments
= Power
Modbus Simulator
=
— Analog Inputs
400008
100-
%
702 702 70- 702
e 60= 60~ 60~ 60~
— Digital = = z =
—— 50—: 50—: 50—: 50-:
40= 40< 40= 40=
@ @ 30: 302 = 302
20- = = =
B @ B 10 10 10 10
000010 000011 000012 0-9 0-% 0= 8] &
— Analog Inputs
\\nlu,, RESLEIPS RELRLEEIPS astleeg, astleeg, LSS
& : % 5 : \‘s\ ”’/ : N ”'/ : \‘: "’/ : \‘: l”/ \\:
0 100 O 0 100 © 100 © 100
400001 400002 400003 400004 400005 400006

Coil Values

——

QOOQ

Note! You need to start the Modbus Slave before you start the Modbus Master(s)

[Modbus Simulator.lvproj/My Computer] <

2 Read
. Stop

https://www.halvorsen.blog c

LabVIEW Discrete Input
Registers Examples

Hans-Petter Halvorsen Table of Contents

LabVIEW Discrete Input Registers Examples

In this Example we Create 2 different LabVIEW Applications:

LabVIEW App #1
LabVIEW App #2 PP Registers

Master | Read Data (Slave
(Client) | Request L (Server)

Data Stored in Registers

Discrete Input Bit (Boolean) Read-only Read/Write

LabVIEW Discrete Input Registers Examples

D{h dbus - Discrete Input.vi —

File Edit View Project Operate Tools Window Help @
»E @ N Pl

A

Discrete Input Values

000.000.00

Note! You need to start the Modbus Slave before you start the Modbus Master(s) .

Sto]
E Modbus Master - Discrete Input.vi P

File Edit View Project Operate Tools Window Help
»E @n

Discrete Input Values

000.000.00

Note! You need to start the Modbus Slave before you start the Modbus Master(s) g Read

. Stop

Modbus Slave

E Modbus Slave - Discrete Input.vi Block Diagram

File Edit View Project Operate Tools Window Help

O X
.
> & @ N QP 2 ba@ 7 [15ptApplicationFont ~ | §ov Tav G “ag *| Search Q ? ‘
~

Create Slave Instance.vi| Write Multiple Discrete Inputs.vil Close.vi [Simple Error Handler.vi|
i w5
ad

New TCP Slave 'I
Startin% Address
:Discreteln ut Values
[TE

Wait (ms)

)

Stop Button

Modbus Master

E Modbus Master - Discrete Input.vi Block Diagram

File Edit View Project Operate Tools Window Help

- O X
_ iy
o ON Y 2 vag o ‘ 15pt Application Font ~ | $ov oo~ - ‘Jd *| Search Q ? ‘

w|
2 i

14| [1] "Read": Value Change

Read Discrete Inputs.vi Closevi| [Simple Error Handler.vi|
h
D =)

‘ == l
New TCP Master v ' B
Starting Address T
—— -
CtIRef Number of Coils
OldVal

Stop Button

https://www.halvorsen.blog c

LabVIEW Input
Registers Examples

Hans-Petter Halvorsen Table of Contents

LabVIEW Input Registers Examples

In this Example we Create 2 different LabVIEW Applications:

LabVIEW App #1
LabVIEW App #2 PP Registers

Master | Read Data (Slave | |
(Client) J'Request | (Server) |}

Data Stored in Registers

Input Register Unsigned Word Read-only Read/Write

LabVIEW Input Registers Examples

B Modbus Slave.vi - O . B Modbus Master Read Input Register.vi - O
File Edit View Project Operate Tools Window Help ”_a[File Edit View Project Operate Tools Window Help w?;
@ N (2= W @ N ? s
Al A
Note! You need to start the Modbus Slave before you start the Modbus Master(s) Note! You need to start the Modbus Slave before you start the Modbus Master(s)

Sensorl
& (&)
{Q 225] [;’;"1 787] E
Sensor2

| [@ fead]

J
. Stop l vj‘ | . Stop J
|

Modbus Slave

SR @I P 2 waF ot |1SptAppIication Font ~ | $ov Oav v b

— O X
File Edit View Project Operate Tools Window Help @
o *| Search Q 2
A

\While Loop

Create Slave Instance.vi

e
A

New TCP Slave ¥

Build Arrazl

Startina Address \Write Multiple Input Registers.vi|
@— [Hodbus-S|
&

Modbus Master Read Input

B Modbus Master Read Input Register.vi Block Diagram - |
File Edit View Project Operate Tools Window Help
S @I @ 2 vaF ot |15ptAppIication Font ~ | Yo o ~ Ggd *| Search Q ? l
i

Event Structure

4| [1] "Read": Value Change v

Read Input Registers.vi
[Fodtuz i
4, &6
=]
Starting Address
i @ Sensorl

m =t O
Number of Holding Registers| } EDBL]
2

New TCP Master ¥

CtIRef
OldVal
NewVal

Sensor
PDBL |

Decimal/Floating-point Numbers

Bensori Read Input Registers.vi
T fi=

;,@ib R T [Starting Address] § [Write Multiple Input Registers.vi] éé e

[Sensor2 @—
s

el —p, f

isters
[: 100}

Unsigned Word Read-only read/write | An Unsigned Word is a 16-bit nonnegative
Integer Value between 0 — 65535 (2716)

Input Register

 How do you deal with Decimal/Floating-point Numbers? In Modbus, the default practice
is to split a 32-bit floating point value across two 16-bit registers.

* In this example | just Multiply with 100 in the the Slave Application, then | divide by 100 in
the Master Application, which work when you deal with numbers with 2 decimals, and
you only need one register per number

* Example: 2.56 => 2.56x100=256 => 256/100 = 2.56

32-bit floating point across two 16-bit registers

Here we have split a 32-bit floating point value across two 16-bit registers

D Convert from 32bit Floating Point to 16bit Word.vi ... = O

File Edit View Project Operate Tools

Window Help
o & () 11 |15pt Applic *| Search A EP
Valid
J
32bit Floating Point 16bit Word x 2

=[16.43 | Eo |

16953
47186

ed
N |
=
0
A

File Edit View Project Operate Tools Window Help

SR @N QP 2 waF ot |15ptAppIication Font ~ | Sov o~ &9~ L

—
N
-

32bit Floating Point] Type Cast

Convert from 16bit Word to 32bit Floating Point.vi| Valid
=
| =
= = o
Lrrr

32-bit floating point across two 16-bit registers

Here we get the 32-bit floating point from two 16-bit registers

~ cnvert from 16bhit Ward +0 22hit Elaatina Point Erant Dane
m Lonvert from I0DbIt Word to >£bIt rleating Foint.vi Front Fane

g = O
} File Edit View Project Operate Tools Window Help =
Sy
@ & () Il |15pt Application Font ~ | $ov+| Search A P =
Al
10bit Word x 2 32bit Floating Point
B - =
SN 4643

)[4nss |

[+]

3 Convert from 16bit Word to 32bit Floating P... — O X
File Edit View Project Operate Tools Window Help =
— ™\ 1 Iy
o @I @ 29 vwa@? ITlSearch =
A
16bit Word x 2 32bit Floating Point]
E 123
i
Ulb
v
< >

https://www.halvorsen.blog c

LabVIEW Holding
Registers Examples

Hans-Petter Halvorsen Table of Contents

LabVIEW Holding Registers Example

In this Example we Create 3 different LabVIEW Applications:

LabVIEW App #2 LabVIEW App #1
S J i (Server)
Polling/Request
Master Read Data : .
i R
[(Client) Data Stored in Registers

LabVIEW App #3

Holding Register Unsigned Word Read/Write Read/Write

LabVIEW Holding Registers Example

File Edit View Project Operate Tools Window Help

np @ 1

Numeric Indicator

5.78 . Stop Numeric Control

[s78

(@ Write]

N

& Modbus Master Read.vi = O X
File Edit View Project Operate Tools Window Help
.. =
i @Nn Pl
A

Note! You need to start the Modbus Slave before you start the Modbus Master(s)

Numeric Indicator

a1 [rea |

. Stop

. Stop

= O . B3 Modbus Master Write - O
‘ vr-gj;, File Edit View Project Operate Tools Window Help I 'v,rgi;,
Pl »E @N L
~ A
- Note! You need to start the Modbus Slave before you start the Modbus Master(s)

Modbus Slave

E Modbus Slave.vi Block Diagram
File Edit View Project Operate Tools Window Help

SR ON QP 9 v J|15ptAppIication Font v | 3o~ ov &9~ Lag

B —
-
*| Search «k W ‘

While Loop
’Create Slave Instance.vi| |
4,

[Simple Error Handler.vi]

New TCP Slave ¥

:Startiné Address
0

Wait (ms)

Modbus Master (Write)

E Modbus Master Write.vi Block Diagram = O
File Edit View Project Operate Tools Window Help
S&® O QP Y wag o |15ptAppIication Font ~ | $ov o~ v g *| Search
A
o[[1] "Write": Value Change v
Create Master Instance.vi Write Single Holding Register.vi] i Simple Error Handler.vi|
o =, E———— N
New TCP Master ¥ Source
@;Add,ess
CtiRef ‘
OldVal Numeric Controll
NewVal [oBLH TU16)
>
v

Modbus Master (Read)

E Modbus Master Read.vi Block Diagram — O b4
: q.-f’;,
*| Search Q W‘ 3
A

File Edit View Project Operate Tools Window Help
>® @ N G 95 wa@ 7| 15ptApplication Font ~ | §ov Tav &b~ “ag

While Loop
Event Structure
1| [1] "Read": Value Change 'H

[

Read
=]
Create Master Instance.vi Read Holding Registers.vi [Simple Error Handler.vi|
e L e 01 =
Starting Address
a 3 u
gr;s/:f[I;lumber of Holding Registers| 100 } HEL]

Alt Solution

How do you deal with Decimal/Floating-point

Numbers?

Previously we implemented a simple solution by
multiplying and dividing with 100, which worked fine
for 2 decimal numbers

In Modbus, the default practice is to split a 32-bit
floating point value across two 16-bit registers.

The disadvantage is that we need to use 2 Modbus
register for representing one number

32-bit floating point across two 16-bit registers

Here we have split a 32-bit floating point value across two 16-bit registers

D Convert from 32bit Floating Point to 16bit Word.vi ... = O

File Edit View Project Operate Tools

Window Help
o & () 11 |15pt Applic *| Search A EP
Valid
J
32bit Floating Point 16bit Word x 2

=[16.43 | Eo |

16953
47186

ed
N |
=
0
A

File Edit View Project Operate Tools Window Help

SR @N QP 2 waF ot |15ptAppIication Font ~ | Sov o~ &9~ L

—
N
-

32bit Floating Point] Type Cast

Convert from 16bit Word to 32bit Floating Point.vi| Valid
=
| =
= = o
Lrrr

32-bit floating point across two 16-bit registers

Here we get the 32-bit floating point from two 16-bit registers

~ cnvert from 16bhit Ward +0 22hit Elaatina Point Erant Dane
m Lonvert from I0DbIt Word to >£bIt rleating Foint.vi Front Fane

g = O
} File Edit View Project Operate Tools Window Help =
Sy
@ & () Il |15pt Application Font ~ | $ov+| Search A P =
Al
10bit Word x 2 32bit Floating Point
B - =
SN 4643

)[4nss |

[+]

3 Convert from 16bit Word to 32bit Floating P... — O X
File Edit View Project Operate Tools Window Help =
— ™\ 1 Iy
o @I @ 29 vwa@? ITlSearch =
A
16bit Word x 2 32bit Floating Point]
E 123
i
Ulb
v
< >

Modbus Master (W

rite)

D Modbus Master Write2.vi Block Diagram O
File Edit View Project Operate Tools Window Help 3
— -~ < = —~— A
& N Y % wag o I15ptAppI|catuon Font ~ | oY Iov v lgd I'l Search 4 ”_@_ 3
A

1 [1] "Write": Value Change v}

Simple Error Handler.vi

New TCP Master ¥ Source
@;Address

CtIRef

OldVal

[- Convert from 32bit Floating Point to 16bit Word.vi|
NewVal [Numeric Control] I
ooy 2

Write Multiple Holding Registers.vi
H
el

Modbus Master (Read)

E Modbus Master Read2.vi Block Diagram * . O
File Edit View Project Operate Tools Window Help &
*| Search _k W 3

A

==

SR/ @ N @ 2 vaF s |15ptAppIication Font ~ | $ov oo+ ~ gl

\While Loop

Event Structure

J| [1] "Read": Value Change vp]

Read
|
Create Master Instance.vi| E : Read Holding Registers.vi Closevi| [Simple Error Handler.vi
L=

Source

Type Starting Address Convert from 16bit Word to 32bit Floating Point.vi]
Time =
e Numeric Indicator

CtlRef
= Number of Holding Registers| L=]

OldVal
2

New TCP Master ¥

Modbus Registers Summary

Coils Bit (Boolean) Read/Write
Discrete Input Bit (Boolean) Read-only
Input Register Unsigned Word Read-only
Holding Register Unsigned Word Read/Write

Read/Write
Read/Write
Read/Write
Read/Write

An Unsigned Word is a 16-bit nonnegative Integer Value between 0 — 65535 (2716)

References

Modbus Organization: http://www.modbus.org
Modbus (Wikipedia): https://en.wikipedia.org/wiki/Modbus

Introduction to Modbus (National Instruments):
http://www.ni.com/white-paper/7675/en/

Connect LabVIEW to Any PLC With Modbus (National Instruments):
http://www.ni.com/tutorial/13911/en/

Modbus 101 - Introduction to Modbus:
http://www.csimn.com/CSI pages/Modbus101.html

Modbus TCP/IP: http://www.rtaautomation.com/technologies/modbus-tcpip/

Modbus RTU: http://www.rtaautomation.com/technologies/modbus-rtu/

Using Modbus for Process Control and Automation (PDF):
http://www.miinet.com/Portals/0/articles/Using MODBUS for Process Control

and Automation.pdf

http://www.modbus.org/
https://en.wikipedia.org/wiki/Modbus
http://www.ni.com/white-paper/7675/en/
http://www.ni.com/tutorial/13911/en/
http://www.csimn.com/CSI_pages/Modbus101.html
http://www.rtaautomation.com/technologies/modbus-tcpip/
http://www.rtaautomation.com/technologies/modbus-rtu/
http://www.miinet.com/Portals/0/articles/Using_MODBUS_for_Process_Control_and_Automation.pdf

Hans-Petter Halvorsen

University of South-Eastern Norway

WWW.uUusn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

